
2. DBMS Systems http://www.lightenna.com/book/export/s5/105

1 of 23 03/03/2007 19:33

2. DBMS Systems
This is the DBMS Systems course theme.
[Complete set of notes PDF 482Kb]

2.1. Queries
In this lecture we look at...
[Section notes PDF 319Kb]

2.1.01 Introduction
Methods of getting data out
The need for queries
QBE
SQL (design side)

History
Schemas and relations (CREATE)
Data types and domains
DROP and ALTER

2.1.02. Querying interfaces
High (view) level
Query-By-Example (QBE)

Alternative to SQL
Table driven (visually similar to relations)
Rather than script driven, hence intuitive over learned
Visual or text based

User fills in templates
Microsoft Access approach

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

2 of 23 03/03/2007 19:33

2.1.02b. QBE visual example
Record advancing
Query designing

Finite domain attributes
Web search parallel

2.1.03. QBE text-format example
P. print, I. insert, D. delete, U. update
_VARNAME, copy field value into variable

2.1.05. SQL
Structured Query Language

(SQL or SEQUEL)
Wikipedia reference

Success of relational databases
Developed for SystemR at IBM
ANSI standardised
SQL-1986 (SQL1), ongoing extension
SQL-1992 (SQL2), current version (Oracle 9i)
SQL-1999 (SQL3), regular expression matching, recursive queries
SQL-2003, XML features, auto-generated columns

2.1.05b. SQL command syntax
Where follows here is a brief summary

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

3 of 23 03/03/2007 19:33

Oracle syntax
Similar but not identical to MySQL/MSSQL

General familiarity
Query writing best learnt by doing it
Lecture live-example
Coursework 1 will be SQL
Oracle (9i) SQL reference
MySQL (5.0) SQL reference

2.1.05c. SQL in application
Keyword oriented language
Keywords not congruous with Relational model
Lots of different ways to write SQL

Analogous to C/Java formatting
if (b==2) { a=1; } else { a=0; }

Recommend using case to differentiate attributes and keywords
SELECT colour, size, shape FROM fruit WHERE weight>22;

Oracle user accounts on Teaching database
Namespace references, e.g. shared.cars

2.1.06. SQL Create schema
Data definition commands
CREATE

SCHEMA <schema_name> AUTHORIZATION <a>
or workspace

Beware of names
Name collisions produce odd behaviours

SQL Schema embraces Tables (relations), constraints, views, domains, authorizations

2.1.07. SQL Create table
CREATE TABLE

<schema_name>.<relation_name>
(

<attribute_definitions>
<key>
<constraints>

)
CREATE TABLE example (Oracle)
Tables can (and should) be indexed by user
e.g. <username>.<tablename>
Normal login implies username
Non-local table access

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

4 of 23 03/03/2007 19:33

2.1.08. Data types and domains (Oracle)
Numeric

ENUM
NUMBER, NUMBER(i), NUMBER(i,j)

Formatted numbers, i precision, j scale
(number of digits total, after decimal point)

Character-string
CHAR(n) - n is length
VARCHAR2(n) - n is max

DESCRIBE output example
Multi-database comparison of Datatypes
Database legacy: limited storage necessitated efficient storage
Does it need to be efficient anymore?

You might consider all SQL types as being conceptually similar to attribute types in the relational
model, although in reality the implementation of these types in a DBMS only approximates the
mathematical purity of unordered domain sets etc.

2.1.08b. Data types and domains (MySQL)
Numeric

TINYINT, INT, INT UNSIGNED
FLOAT, DOUBLE, DECIMAL
ENUM
Character-string

CHAR(n) - n is length
VARCHAR(n) - n is max
TINYTEXT, TEXT
Beware different default/maximum lengths to Oracle

BLOB
Multi-database comparison of Datatypes

2.1.09. Time-based data types
Date and Time

DATE
Ten positions, components YYYY-MM-DD

TIME
Eight positions, components HH:MM:SS

TIME(i)
Time fractional seconds precision
Adds i+1 positions

TIMESTAMP
optionally WITH TIME ZONE

Very sensitive to syntactical ambiguities

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

5 of 23 03/03/2007 19:33

day/month/year/hour/minute separators

2.1.10. DROPing
DROP <object> <obj_name> <flags>
DROP SCHEMA <schema_name> CASCADE

drops all workspace tables, domains
DROP TABLE <relation_name> RESTRICT

only drops table if
not referenced in any constraints/views

Notion of cascading
Table links

2.1.11. ALTERing
Schema evolution
Design side
ALTER TABLE <schema_name>.<relation_name> ADD
<var_name> <var_type>;
Example

ALTER TABLE uni.student ADD hall VARCHAR(32);
Upper and lower case syntax
Naming conventions

2.1.12. Queries
Helper interfaces

HeidiSQL/phpMyAdmin/Sword/SQLplus
Design/perform a lot of routine queries for you
Important to learn SQL, reinforcement
Designing select queries is more difficult
Visual interfaces still lacking in this area

Select queries in SQL
Basic singlets
Renaming
Queries with Joins
Nested queries

2.1.13. SQL Queries
SELECT statement
Similar to relational data model SELECT then PROJECT

SELECT <attribute list>
FROM <table list>

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

6 of 23 03/03/2007 19:33

WHERE <condition>;

2.1.14. SQL Queries
SELECT <attr_list>

FROM R,S,T
WHERE DNO = 10

equivalent to
p<attr_list>(sDNO=10 (R X S X T))
True-false evaluation tuple by tuple
WHERE clause as compound logical statement

2.1.15. SQL Queries
Produces a relation/set of tuples
Can be used to extract a single tuple
e.g. SELECT bday, age

FROM student
WHERE fname='Tim' AND lname='Smith'
Result = (13-05-80, 20)

Argument quoting (')
SQL poisoning
Not null
Not numeric values

MySQL Attribute quoting (`)
Hypothetical attribute `all`, all, and ALL

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

7 of 23 03/03/2007 19:33

SQL poisoning is a vulnerability exposed by inadequate escaping of arguments/variables used to compose
SQL queries.

E.g. Tim in previous example, could be Tim'; DELETE FROM student;' SELECT * FROM student WHERE 1

2.1.16. Renaming and referencing
AS keyword
(Partial) Attribute renaming in projection list

SELECT fname AS firstName, minit, lname AS surname...
Role names for relations

SELECT S.FNAME, F.FNAME, S.LNAME
FROM STUDENT AS S, STUDENT AS F
WHERE S.LNAME=F.LNAME

(Total) Attribute renaming in FROM
SELECT s.firstName, s.surname

FROM student AS s(firstName,surname,DOB,NINO,tutor)
Wildcards (SELECT s.* FROM...)

2.1.17. SQL Tables
Relations are bags, not sets

e.g. projection of non-key attributes
Set cannot contain duplicate item/repetition
Duplicates exist in bags and be:

SELECT DISTINCT (eliminated)
SELECT ALL (ignored/kept)

2.1.18. Queries and Joins
Relational database allows inter-related data
SQL select FROM gives Cartesian product
WHERE clause defines join condition

SELECT proj.pnum, mgr.ssn
FROM project AS proj, employee AS mgr
WHERE proj.mgrssn = mgr.ssn;

Alternatively, explicitly define join (note type)
SELECT project.pnum, employee.ssn
FROM project INNER JOIN employee
ON project.mgrssn = employee.ssn;

2.1.18b. Outer joins

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

8 of 23 03/03/2007 19:33

Outer joins are crucial in the real-world
Databases often contain NULLs (3VL)
Analysis of where the crucial data is across a relationship
Previous example, only get project data for managed projects

SELECT project.*, employee.*
FROM project INNER JOIN employee
ON project.mgrssn = employee.ssn;

2.1.18c. Outer joins (cont)
Scale of loss isn't always instantly obvious
NULLs often used unpredicably
May want project information, even if no employee attached as manager

SELECT project.*, employee.*
FROM project LEFT OUTER JOIN employee
ON project.mgrssn = employee.ssn;

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

9 of 23 03/03/2007 19:33

2.1.19. 2y and 3y joins
Queries can encapsulate any number of relations

Even one relation many times (in different roles)
Relationship chain
Across many relations

Tuples as Entities OR Relationships
e.g. Employee -> Works_on -> Project -> Department ->
Manager

2.1.20. Recursive closure
Can’t be done in SQL2
Recursive relationships
Unknown number of steps
SQL2 can’t generalise in single query

2.1.21. Nested queries
Essential one or more (inner) queries within an (outer) query
Inner and outer query
Not to be confused with inner and outer joins
Inner query can go in three places

SELECT clause (projection list)
Must return a single value, then aliased as attribute in outer result

FROM clause
Inner query result used as standard table in FROM cross product

WHERE clause

2.1.21b. Nested query example
Use of query result as comparator for other (outer) query

SELECT DISTINCT course
FROM dept WHERE course IN (

SELECT d.course
FROM dept AS d, faculty AS f, student AS s
WHERE d.ownfac=f.id AND s.owndept=d.id
AND f.name='Eng' AND s.year='3'

) OR course IN (
SELECT course
FROM dept
WHERE code LIKE 'COMS3%');

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

10 of 23 03/03/2007 19:33

2.1.22. Bridging SQL across 3 tiers
Three tier database design
Changing role of DBMS
Indices
Aggregate functions (conceptual)

Over bags and sub-bags
Creating and updating views (ext)
SQL embedding

In this subsection we look at the different roles SQL play across the three tiers of database design. We discuss
the areas in which SQL is lacking and how those difficiencies can be complemented by embedding SQL in
other languages.

2.1.25. Indices
Low/Internal level
Index by one attribute
For queries selecting by that attribute:

Faster tuple access (ordered tuples)
Reduces database memory load

Small cross product relation, only crosses requisites
Accelerates query resolution time

CREATE INDEX Index_Name ON RELATION(Attribute);

2.1.26. Aggregate functions
Run over groups of tuples
Takes a projected attribute list as an argument
Produce relation with single tuple
SUM, MAX, MIN, AVG, COUNT
e.g. AggFunc over all tuples

SELECT SUM(SALARY), MAX(SALARY), MIN(SALARY)

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

11 of 23 03/03/2007 19:33

FROM EMPLOYEE;
Single attribute lists (distinct values)
Multi-attribute lists (granularity of distinct values by pairing)

2.1.27. Aggregates over sub-bags
Can run over subsets of tuples
GROUP BY keyword
Specifies the grouping attributes
Need to also appear in projected attr_list
Show result along side value for group attr
e.g. AggFunc over subgroups

SELECT dno, COUNT(*)
FROM employee
GROUP BY dno

Quick SQL check, do all attributes in the SELECT projection list appear in the GROUP BY projection list.

2.1.28. Creating views
Views are partial projections
Virtual relations, or views of live relations
Update synchronised

CREATE VIEW <virtual_relname>
AS <real_relation>

Real relation could be a query result
Clever bit is the change propagation
UPDATEs made to the view dataset are flooded back to relations

INSERT and DELETE behaviour needs to be defined
Non-trivial as INSERT into view (virtual relation) may leave holes in real relation

2.1.29. Embedding SQL
SQL (alone) can do lots of clever things in one expression
But can only execute a single expression
Can structure SQL commands into proper programming languages
Java Database Connection (JDBC)

javac, then java VM
COBOL, C or PASCAL

precompiled with PRO*COBOL or PRO*C
Procedure Language (PL/SQL)

Oracle/MySQL procedural language
Stored procedures can take parameters

2.2. Internals

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

12 of 23 03/03/2007 19:33

In this lecture we look at...
[Section notes PDF 180Kb]

2.2.01. Introduction
Database internals (base tier)
RAID technology

Reliability and performance improvement
Record and field basics
Headers to hashing
Index structures

2.2.01b. Machine architecture (by distance)
Distance from chip determines minimum latency
Speed of light is a constant
Impact of bus frequencies

IDE (66,100,133 Hz)
PCI, PCI-X (66,100,133 Hz)
PCI Express (1Ghz to 12Ghz)

Impact of bus bandwidths
PCI (32/64 bit/cycle, 133MB/s)
PCI Express (x16 8.0GB/s)

Here's a link from Intel showing a machine architecture with signal bandwidths: Intel diagram

2.2.01c. Machine architecture (by capacity)
Capacity increased with distance
Staged architecture as compromise
Speed, time/distance

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

13 of 23 03/03/2007 19:33

Also cost, heat, usage scale

2.2.02. Database internals
Stored as files of records (of data values)

Auxiliary data structures/indices
1y and 2y storage

memory hierarchy (pyramid diagram)
volatility

Online and offline devices
Primary file organisation, records on disk

Heap - unordered
Sorted - ordered, sequential by sort key
Hashed - ordered by hash key
B-trees - more complex

2.2.03. Disk fundamentals
DBMS task

linked to backup
1y, 2y and 3y

e.g. DLT tape
Changing face of current technology

Impact of inexpensive harddisks
Flash memory devices (CF, USB)

Random versus sequential access
Latency (rotational delay) and
Bandwidth (data transfer rate)

2.2.04. RAID technology
Redundant Array of Independent Disks
Data striping

Blocks (512 bytes), bits and transparency
Reliability (1/n)

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

14 of 23 03/03/2007 19:33

Mirroring/shadowing
Error correction codes/parity

Performance (n)
Mirroring (2x read access)
Multiple parallel access

2.2.05. RAID levels
0 No redundant data
1 Disk mirrors (performance gain)
2 Hamming codes (also detect)
3 Single parity disk
4 Block level striping
5 and parity/data distribution
6 Reed-Soloman codes

2.2.06. Records and fields
DBMS specific, generally
Records (tuples) comprise fields (attributes)
File is a sequence of records
Variable length records

Variable length fields
Multi-valued attributes/repeating fields
Optional fields
Mixed file of different record types

2.2.07. Fields
records -> files -> disks
Fixed length for efficient access
Networking issues
Delimit variable length fields (max)
Explicit record/field lengths
Separators (,;,:,$,?,%)
Record headers and footers
Spanning

block boundaries and redundancy

2.2.08. Primary organisation
Bias data manipulation to 1y memory

Load record to 1y, write back
Cache theorem

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

15 of 23 03/03/2007 19:33

Data storage investment, rapidity of access
optimisations based on frequent algorithmic use

Ordering, ordering field/key field
Hashing

2.2.09. Indexes/indices
Auxiliary structures/secondary access path
Single level indexes (Key, Pointer)
File of records
Ordering key field
Primary, Secondary and Clustering

2.2.09b. Primary index example
Primary index on simple table
Ordering key field (primary key) is Integer
Pointers as addresses
Sparse, not dense

2.2.10. Primary Index file (as pairs list)
Two fields <K(i),P(i)>
Ordering key field and pointer to block
Second example, indexing candidate key Surname

K(1)="Barnes",P(1) -> block 1
Barnes record is first/anchor entry in block 1

K(2)="Smith",P(2) -> block 6
K(3)="Zeta",P(3) -> block 8

Dense (K(i) for every record), or Sparse
Enforce key constraint

2.2.10b. Clustering index example

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

16 of 23 03/03/2007 19:33

Clustering index
Ordering key field (OKF) is non-key
Each entry points to multiple records

2.2.11. Clustering Index (as pairs list)
Two fields <K(i),P(i)>
Ordering non-key field and pointer to block

Internal structure e.g. linked list of records
Each block may contain multiple records

K(1)="Barnes",P(1) -> block 1
K(2)="Bates",P(2) -> block 2
K(3)="Zeta",P(3) -> block 3

K(i) not required to have
a distinct value for each record
non-dense, sparse

2.2.11b. Secondary Index example
Independent of primary ordering
Can't use block anchors
Needs to be dense

2.2.12. More indices

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

17 of 23 03/03/2007 19:33

Single level index
ordered index file
limited by binary search

Multi level indices
based on tree data structures (B+/B-trees)

faster reduction of search space (logfobi)

2.2.13. Indices
Database architecture

Intension/extension
Indexes separated from data file

Created/disgraded dynamically
Typically 2y to avoid reordering records on disk

2.2.14. Query optimisation
Faster query resolution

improved performance
lower load
hardware cost:performance ratio

Moore's law
Query process chain
Query optimisation

2.2.15. Query processing
Compile-track familiarity

Scanner/tokeniser - break into tokens
Parser - semantic understanding, grammar
Validated - check attribute names

Query tree
Execution strategy, heuristic

Query optimisation
In (extended relational) canonical algebra form

2.2.16. Query optimisation
SQL query

SELECT lname, fname
FROM employee
WHERE salary > (

SELECT MAX(salary)
FROM employee

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

18 of 23 03/03/2007 19:33

WHERE dno=5
);

Worst-case
Process inner for each outer

Best-base
Canonical algrebraic form

2.2.16b. Query optimisation implementation
Indexing accelerates query resolution
Closed comparison (intra-tuple)

all variables/attributes within single tuple
e.g. x < 100

Open comparison (inter-tuple)
variables span multiple tuples

Essentially a sorting problem
Internal sorting covered (pre-requisites)
Need external sort for non-cached lists

2.2.17. Query optimisation
External sorting

Stems from large disk (2y), small memory (1y)
Sort-merge strategy

Sort runs (small sets of total data file)
Then merge runs back together

Used in
SELECT, to accelerate selection (by index)
PROJECT, to eliminate duplicates
JOIN, UNION and INTERSECTION

2.3. B-trees
In this lecture we look at...
[Section notes PDF 159Kb]

2.3.01. Hash tables
Used to implement Indicies
O(n) access
Ordering Key Field (K) as argument to Hash function H()
Address H(K) maps to pointer

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

19 of 23 03/03/2007 19:33

2.3.02. Tree structure
Tree revision
Node based
Branching nodes/leaf nodes
Parent/child nodes
Root node
Cardinality

2.3.03. Multi-level indices
Multi-level indices
One index indexes another

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

20 of 23 03/03/2007 19:33

Implemented by multiple hash-tables
<H(k),P> pairs
(data far right)

2.3.04. Index zipping
Collapsing a single index
Two columns become one
<H(k),P> pairs sequentially stored
Common in the Elmasri

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

21 of 23 03/03/2007 19:33

2.3.05. B-tree
Paritioning structure
Each node contains keys & pointers
Pointers can be:

Node pointers - to child nodes
Data pointers - to records in heap

Number of keys = Number of pointers - 1
Every node in the tree is identical

2.3.06. B+ trees
Similar to B-trees
Different types of nodes

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

22 of 23 03/03/2007 19:33

Branching nodes
Leaf nodes

Each branching node has:
At most U children (max U)
At least L children (min L)
U = 2L, or U = 2L-1

2.3.07. Properties of B+ trees
Balanced
All leaf nodes at same level
Record search takes same time for every record
Partitioning needs to be comprehensive
B-tree: a1 < x < a2
B+tree: a1 <= x <= a2
Why?

because all data for partition values must be in the lowest level of the tree

2.3.08. B+ tree operations
Insert operation cascades from bottom
Rules: node can contain U children (max)
Node combine

Legal if child nodes contain L children
Parent loses one key/paritition value

Node split
Legal if node contains U children
Parent node gains one key/partition value

Can cause cascade up tree & rebalancing

2. DBMS Systems http://www.lightenna.com/book/export/s5/105

23 of 23 03/03/2007 19:33

